Читать Обнаружение вариантов вредоносных программ на основе чувствительных системных вызовов с использованием многослойных нейронных сетей
© Никита Шахулов, 2021
ISBN 978-5-0055-5330-0
Создано в интеллектуальной издательской системе Ridero
Обнаружение вредоносных программ стало чувствительным к задачам, поскольку их угрозы распространяются от компьютерных систем до систем Интернета вещей. Современные варианты вредоносных программ, как правило, оснащены сложными упаковщиками, которые позволяют им обходить современные системы обнаружения, основанные на машинном обучении. Для обнаружения упакованных вариантов вредоносных программ можно использовать методы распаковки и динамический анализ вредоносных программ. Однако методы распаковки не всегда могут быть полезны, поскольку существуют некоторые упаковщики, такие как частные упаковщики, которые трудно распаковать. Хотя динамический анализ вредоносных программ может получить информацию о поведении исполняемых файлов, поведение упаковщиков при распаковке добавляет шумную информацию к реальному поведению исполняемых файлов, что плохо сказывается на точности. Чтобы преодолеть эти проблемы, в этой книге я предлагаю новый метод, который сначала извлекает серию системных вызовов, чувствительных к вредоносному поведению, затем использует анализ главных компонентов для извлечения функций этих чувствительных системных вызовов и, наконец, использует многоуровневые нейронные сети для классификации функций вариантов вредоносных программ и законных. Теоретический анализ и результаты экспериментов в реальной жизни показывают, что моя методика обнаружения упакованных вариантов вредоносных программ сопоставима с современными методами с точки зрения точности. мой подход позволяет достичь более 95,6% точности обнаружения и 0,048 с затрат времени на классификацию.
Введение
Вредоносное ПО сегодня является одной из основных угроз безопасности в Интернете, механизмы защиты от обнаружения, такие как морфизм кода, превращают вредоносное ПО во множество вариантов, из-за которых схемы обнаружения на основе подписи работают плохо. Обнаружение вариантов вредоносных программ улучшает методы обнаружения на основе сигнатур. В последние годы исследователи сосредоточились на обнаружении вариантов вредоносных программ с помощью методов машинного обучения, которые превращают проблему обнаружения вариантов вредоносных программ в проблему поиска сходства программ. Когда новая программа достаточно похожа на любую подписанную вредоносную программу в наборе обучающих данных, программа проверяется как вредоносная программа.
Поскольку анализ вредоносных программ включает в себя два вида способов: статический анализ и динамический анализ. Некоторые исследования, такие как (Сантос и соавт. 2011; Чезаре и соавт. 2014; Nataraj соавт. 2011; Чжан и соавт. 2016; Чжан и соавт. 2016; Ян и соавт. 2015; Раман и соавт. 2012), предлагаю использовать статический анализ, который извлекает объекты из двоичных файлов без фактического выполнения программ, таких как коды операций, контроль передачи графической и т. д. для обнаружения вариантов вредоносных программ. Однако, когда варианты вредоносного ПО уже упакованы, это предотвращает дальнейший анализ с помощью инструментов разборки, инструментов синтеза и других инструментов статического анализа.
Современные варианты вредоносных программ всегда оснащены сложными пакерами, такими как ASPack (2017), ASProtect (2017), UPX (2017), VMProtect (2017), ZProtect (2017) и т.д., Которые позволяют вариантам вредоносных программ обходить традиционные и современные системы обнаружения. Эти упаковщики включают два вида упаковщиков: упаковщики шифрования и упаковщики сжатия, которые работают, беря существующее приложение, упаковывая его, а затем оборачивая вокруг него утилиту распаковки. Утилита распаковки работает для распаковки внутреннего исполняемого файла в памяти и передает ему выполнение. Проблема заключается в том, что в упаковщике или коде распаковки нет ничего изначально вредоносного (Treadwell et al. 2009). При игнорировании упаковщиков трудно определить, является ли исполняемый файл вредоносным из-за шифрования или сжатия исполняемого файла, что не позволяет системам обнаружения получать оригинальные функции, особенно для статического анализа.