⇚ На страницу книги

Читать Как контролировать мышление детей?

Шрифт
Интервал

© Анатолий Зак, 2020


ISBN 978-5-0051-0380-2

Создано в интеллектуальной издательской системе Ridero

Введение

В этой небольшой книжке рассказывается о мышлении, о том, как оно понимается в современной психологии, каким образом можно оценить его развитие у детей, в частности, у младших школьников. Важно познакомить родителей и учителей с современными представлениями о мышлении человека.

Одно из таких представлений разработано выдающимся отечественным психологом В.В.Давыдовым. Согласно его теории имеются два подхода к решению задач. При одном подходе существенные и несущественные отношения в условиях задачи не различаются, решение целиком не планируется и осуществляется путем проб и ошибок, а успешный способ решения либо вообще не осознается, либо в нем осознается лишь конкретный состав операций. Такой подход называется необобщенным.

При другом подходе существенные отношения в условиях задачи вычленяются, решение планируется целиком и осуществляется без проб и ошибок, а в успешном способе решения осознается не только конкретные операции, но и его связь с существенными отношениями. Такой подход называется обобщенным.

Первый подход используется детьми еще в дошкольном возрасте. При этом решение задачи не имеет самостоятельной познавательной части, связанной с выполнением действием анализа условий задачи, и сводится, в основном, к практическим действиям. Второй подход осваивается уже в начальной школе, – на материале типовых заданий по математике и грамматике. В этом случае решение задачи включает познавательную часть, связанную с выполнением действия анализа данных условий, и практическую часть, связанную с реальным достижением конкретного результата.

По В. В. Давыдову, изменение в мышлении младших школьников, его развитие состоит в смене подхода от решения задач необобщенным способом к их решению обобщенным способом. Таким образом, контроль мышления в начальной школе состоит в учете, в отслеживании смены способов решения задач.

Эти два способа четко различаются при решении серии аналогичных задач.

Рассмотрим, например, задание, где нужно подбирать слагаемые к известной сумме.

117 = … +…+…+…
29 = …+…+…+…+…+…+…
73 = …+…+…

Когда дали такое задание ученикам третьего класса, то все дети справились с примерами этого задания. В рамках нашего обсуждения о способах решения задач важно, что дети везде использовали разные числа, например:

117 = 10 +27 +30 +50
29 = 6 +3 +7+2 +4 +6 +1
73 = 20 +17 +36

Подобранные детьми слагаемые отчетливо показывают, что каждый пример решался отдельно, как самостоятельная задача. Такой способ решения считается необобщенным, формальным. В этом случае человек, решая эти примеры, учитывает их наглядные данные особенности: различие предложенных сумм, разное число слагаемых.

Когда это же задание дали ученикам девятого класса, выяснилось, что часть подростков выполнили это задание, как ученики третьего класса, а часть – по-другому, например:

117 = 1 +1 +1 +114
29 = 1 +1 +1+1 +1 +1 +23
73 = 1 +1 +71

Такой способ решения называется обобщенным, содержательным.

Чем же интересен этот способ? Во-первых, в отличие от необобщенного способа, человек, решая эти примеры, не только учитывает их наглядные особенности, но, главное, старается вникнуть в их содержание, понять эти три примера, как варианты одного и того же содержания. Это позволяет решать примеры на основе единого принципа.