1.1.Определители 2-го порядка
Пусть дана квадратная таблица из следующих чисел:
Матрица A
Число A = а>11∙а>22 – а>12∙а>21 называется определителем 2-го порядка и соответствует приведенной выше матрице Этот определитель обозначается символом det A и вычисляется по следующему правилу:
Правило вычисления определителя второго порядка.
Числа а>11,а>22, а>12,а>21 являются элементами определителя. Говорят, что элементы а>11,а>22 лежат на главной диагонали определителя, а а>12,а>21 – на побочной.
Таким образом определитель 2-го порядка равен разности между произведениями элементов, лежащих на главной и побочной диагоналях.
1.2.Определители 3-го порядка
Рассмотрим таблицу из 9-ти элементов:
Определитель 3-го порядка.
Определителем 3-го порядка, соответствующим зтой таблице, называется число, равное:
а>11∙а>22∙а>33 + а>21∙а>23∙а>31 + а>21∙а>32∙а>13 – а>13∙а>22∙а>31 – а>11∙а>32∙а>23 – а>21∙а>12∙а>33
Этот определитель обозначается символом det:
При вычислении определителя 3-го порядка удобно пользоваться правилом треугольника (правилом Саррюса):
1.3.Свойства определителей
1) Равноправность строк и столбцов: определитель не изменится, если его строки заменить столбцами или наоборот.
Первое свойство определителя (2-го порядка).
Первое свойство определителя (3-го порядка).
2) При перестановке двух параллельных рядов, определитель меняет знак.
Второе свойство определителя (3-го порядка).
3) Определитель, имеющий два одинаковых ряда, равен 0
Третье свойство определителя (3-го порядка).
4) Общий множитель элементов какого-либо ряда определителя можно выносить за знак определителя.
Четвертое свойство определителя (3-го порядка).
Из свойств 3 и 4 следует, что если все элементы некоторого ряда пропорциональны соответствующим элементам параллельного ряда, то такой определитель равен 0
Следствие из свойств 3 и 4.
5) Если элементы какого-либо ряда определителя представляют собой суммы двух слагаемых, то определитель может быть разложен на сумму двух соответствующих определителей.
Пятое свойство определителя (3-го порядка).
6) Элементарные преобразования определителя.
Определитель не изменится, если к элементам одного ряда прибавить соответствующие элементы параллельного ряда, умноженные на любое число:
Элементарные преобразования определителя (3го порядка)..
Минором некоторого элемента а>ij определителя n-ого порядка называется определитель n-1 —ого порядка, полученный из исходного, путем вычеркивания i – строки, j – столбца
Обозначается М>ij
Минор элемента а>ij
Минор элемента а>13
Алгебраическим дополнением элемента А>ij определителя называется его минор (М>ij), взятый со знаком «+», если сумма i+j – четное число, «-» если i+j – нечетное число.