⇚ На страницу книги

Читать Решаем задачи Python

Шрифт
Интервал


Логическое мышление и базовые конструкции Python

1. Задача о числе Пи: Используя метод Монте-Карло, приблизить число Пи.

Описание метода Монте-Карло: Метод Монте-Карло – это статистический метод, используемый для оценки численных значений математических функций, основанный на генерации случайных чисел. В данном случае мы будем использовать метод Монте-Карло для приближенного вычисления числа Пи.

Идея метода: Представим, что у нас есть круг с радиусом 1, вписанный в квадрат со стороной 2. Площадь круга равна π, а площадь квадрата равна 4. Если мы случайным образом генерируем точки внутри квадрата, то вероятность попадания точки внутрь круга равна отношению площади круга к площади квадрата, то есть π/4. Зная это, мы можем использовать метод Монте-Карло для оценки числа π.

Шаги решения:

1. Создание квадрата со стороной 2 и вписанного в него круга с радиусом 1.

2. Генерация случайных точек внутри квадрата.

3. Подсчет количества точек, попавших внутрь круга.

4. Оценка числа π как отношение числа точек, попавших внутрь круга, к общему числу сгенерированных точек, умноженное на 4.

Чем больше точек мы используем, тем более точное приближение числа π мы получим.

Пример кода на Python:

```python

import random

def monte_carlo_pi(num_points):

points_inside_circle = 0

total_points = num_points

for _ in range(num_points):

x = random.uniform(-1, 1)

y = random.uniform(-1, 1)

distance = x**2 + y**2

if distance <= 1:

points_inside_circle += 1

pi_estimate = 4 * points_inside_circle / total_points

return pi_estimate

# Пример использования

num_points = 1000000

estimated_pi = monte_carlo_pi(num_points)

print(f"Приближенное значение числа Пи с использованием {num_points} точек: {estimated_pi}")

```

Этот код генерирует миллион случайных точек в квадрате и оценивает значение числа π с помощью метода Монте-Карло.

Пояснения к каждой части кода:

1. `import random`: Эта строка импортирует модуль `random`, который мы будем использовать для генерации случайных чисел.

2. `def monte_carlo_pi(num_points)`: Это определение функции `monte_carlo_pi`, которая принимает один аргумент `num_points`, представляющий количество случайных точек, которые мы сгенерируем.

3. `points_inside_circle = 0`: Эта переменная будет использоваться для отслеживания количества точек, попавших внутрь круга.

4. `total_points = num_points`: Эта переменная хранит общее количество сгенерированных точек.

5. `for _ in range(num_points):`: Этот цикл генерирует `num_points` случайных точек внутри квадрата.

6. `x = random.uniform(-1, 1)` и `y = random.uniform(-1, 1)`: Эти строки генерируют случайные координаты `x` и `y` для каждой точки в диапазоне от -1 до 1, что соответствует координатам квадрата.

7. `distance = x**2 + y**2`: Это вычисляет квадрат расстояния от начала координат до сгенерированной точки.

8. `if distance <= 1:`: Этот оператор проверяет, попадает ли точка внутрь круга, используя тот факт, что расстояние от начала координат до точки меньше или равно радиусу круга (который равен 1).

9. `points_inside_circle += 1`: Если точка попадает внутрь круга, увеличиваем счетчик точек внутри круга.

10. `pi_estimate = 4 * points_inside_circle / total_points`: Эта строка оценивает значение числа π, умножая отношение точек внутри круга к общему числу точек на 4, так как отношение площади круга к площади квадрата равно π/4.