Обзора формулы $H^ {\otimes n} (x) + p \mod 2^n = H^ {\otimes n} (x \oplus p \mod 2^n) $, которая является основной темой. Данная формула представляет собой уникальную операцию, зависящую от входных данных и заданных параметров вращения кубитов.
Формула состоит из нескольких компонентов. Во-первых, у нас есть оператор Адамара, обозначаемый как $H$, который применяется ко всем кубитам. Он накладывает состояния «0» и «1» друг на друга, создавая суперпозицию. Оператор Адамара также является собственным вектором оператора фазы.
Далее, у нас есть битовая последовательность входных данных, обозначенная как $x$. Эта последовательность представляет состояние кубитов, на которое будет применен оператор Адамара.
Заданный набор параметров для вращения кубитов обозначается как $p$. Эти параметры определяют, как будет вращаться каждый кубит после применения оператора Адамара.
Операция $\oplus$ обозначает сложение по модулю 2. Она применяется между входными данными $x$ и параметрами $p$, поэтому каждый кубит в $x$ будет сложен с соответствующим кубитом в $p$. Результат этой операции будет представлен в виде новой битовой последовательности.
Наконец, у нас есть количество кубитов $n$, которое указывает, сколько кубитов будет использоваться в этой операции.
Основная идея формулы заключается в следующем: если мы сначала применим оператор Адамара ко всем кубитам, а затем применим операцию сложения по модулю 2 между входными данными $x$ и параметрами $p$, а затем снова применим оператор Адамара к результату, мы получим тот же результат, который мы получили бы, если бы мы сначала применили оператор Адамара к $x$, затем сложили бы его с $p$, а затем снова применили оператор Адамара.