Глава 1: Искусственный интеллект и его рождение
Искусственный интеллект (AI – artificial intelligence) – это обширная и многообразная область науки и техники, которая изучает способы создания машин, способных имитировать человеческое мышление, обучаться и решать задачи, которые обычно требуют интеллекта. Рассмотрим ключевые этапы развития AI, начиная с первых идей и теорий и заканчивая современными достижениями в этой области.
Первые попытки создать механизмы, имитирующие человеческое поведение, предпринимались еще в античности и средние века, однако научный подход к разработке искусственного интеллекта начал складываться в середине XX века. Одним из важнейших теоретиков AI является английский математик и логик Алан Тьюринг, который предложил свой знаменитый тест Тьюринга в 1950 году. Этот тест предполагает, что машина считается интеллектуальной, если ее поведение нельзя отличить от поведения человека.
В 1956 году на конференции в Дартмуте впервые было предложено использовать термин "искусственный интеллект", и с тех пор начинается активное развитие AI. В 60-70-е годы XX века исследователи создали первые экспертные системы, которые могли автоматически решать задачи в определенных предметных областях, используя знания, захардкоженные в их программах.
Однако, несмотря на определенные успехи, искусственный интеллект сталкивался с рядом проблем, связанных с невозможностью обобщения и переноса знаний между различными задачами. В результате интерес к AI временно снижался, и наступила так называемая "зима искусственного интеллекта".
Прорыв произошел в начале XXI века благодаря развитию машинного обучения и глубокого обучения. Основной идеей машинного обучения является то, что машины могут автоматически извлекать закономерности и обобщения из больших объемов данных, не требуя явного кодирования правил и знаний. Глубокое обучение – это подраздел машинного обучения, использующий искусственные нейронные сети с большим количеством слоев для изучения сложных закономерностей в данных.
В 2012 году научное сообщество было потрясено результатами исследования Алексея Кривцова, который представил сверточную нейронную сеть (CNN) с глубокой архитектурой, обеспечивающую значительное улучшение качества распознавания изображений. Это событие послужило стимулом для интенсивного развития глубокого обучения и AI в целом.
Одним из значимых результатов развития глубокого обучения стала создание архитектуры трансформеров в 2017 году. Трансформеры используют механизмы внимания для обработки последовательностей данных, что позволило значительно улучшить результаты в задачах обработки естественного языка. Благодаря этому достижению были созданы такие модели, как BERT, GPT и GPT-2, которые показали революционные результаты в области AI.
Создание проекта OpenAI в 2015 году стало важным шагом в развитии искусственного интеллекта. Основанная Илоном Маском, Сэмом Альтманом и другими видными предпринимателями и учеными, организация заявила о своей миссии построения дружественного AI, который мог бы помочь человечеству в решении сложных проблем и улучшении качества жизни. Одним из ярких результатов работы OpenAI стала разработка архитектуры GPT-3 и последующая ее версия GPT-4, на основе которой создан искусственный интеллект ChatGPT.