Взаимоотношения шахмат и математики достойны если не целого романа-эпопеи, то уж как минимум объёмной повести. Математики знают, что в шахматах, как и в любой другой игре с конечным числом позиций, существует выигрышная стратегия для одного из игроков – за это шахматистам впору ненавидеть математиков. Однако общее число всех возможных позиций настолько огромно, что даже современным компьютерам не под силу провести их полный перебор – и за это математикам уже впору возненавидеть шахматистов (или, вернее, того, кто эту будоражащую умы игру изобрёл).
Тем не менее, современные шахматные программы уже стабильно обыгрывают игроков-людей, даже не имея возможности перебрать все варианты – ведь и частичный перебор машине удаётся намного лучше, чем человеку. Но, несмотря на значительные успехи компьютеров, шахматы вполне живы и активно развиваются, как вид спорта.
Многие известные шахматисты (например, А. Е. Карпов или М. Н. Таль) в юности проявляли математические способности и выигрывали математические олимпиады, а М. М. Ботвинник и вовсе был доктором техническим наук и крупным специалистом по электротехнике. Многие известные математики (например, академик А. А. Марков) и физики (например, академик П. Л. Капица) достаточно хорошо играли в шахматы.
Задачи, связанные с шахматной доской, обсуждаются на математических кружках1 издавна. Наверное, одной из главных причин этого является одновременная обиходная простота шахмат (все дети хоть раз видели доску и большинство даже слышали, как ходят основные фигуры) и их невероятная сложность (ведь гроссмейстеры учатся годами, чтобы научиться выигрывать в этой игре) – этот дуализм, который и делает именно шахматную доску, возможно, наилучшим объектом для исследования на первом году математического кружка, в котором детям ещё чужды абстракции и так важны связи с реальным осязаемым миром.
Задачи, которые обсуждаются в этой книге, делятся на два типа: первый будет связан с разрезанием самой доски и, как правило, вообще не использует магию шахмат (хотя там иногда нелишне бывает вспомнить о раскраске, характерной для шахматной доски), а второй связан с шахматными фигурами, непосредственно с тем, как они ходят и бьют.
Важно отметить, что кружковские задачи о шахматной доске не связаны с шахматными задачами, которые обсуждаются в соответствующих секциях. И, хотя глобальные цели у математического кружка и шахматной секции достаточно похожи – научить ребёнка логически мыслить, планировать, просчитывать на несколько шагов вперёд – методы достижения этих целей всё-таки разные. Олимпиадная математика не растит шахматиста, а лишь воспитывает рациональное и логическое мышление посредством понятных всем примеров. Хотя примеры успешного совмещения олимпиадной математики и спортивных шахмат встречаются среди способных школьников не так уж редко.
В завершение вступительной части отмечу, что ещё больше интересных сюжетов, чем я опишу дальше, на стыке шахмат и математики можно почерпнуть в прекрасной книге [4], написанной шахматистом и кандидатом технических наук Евгением Гиком сорок лет назад. С тех пор ничего настолько масштабного и подробного по теме не выходило.