⇚ На страницу книги

Читать Теорема Ферма. Доказательство

Шрифт
Интервал

Доказательство Великой Теоремы Ферма, не уместившаяся на узких полях «Арифметики» Диофанта.


Ферма утверждал, что для чисел «с» не существует натуральных значений при натуральных значениях «а» и «b», при «n» больше 2

Эта формула выглядит похожей на уравнение Пифагора для прямоугольного треугольника при вычислении длины его сторон. А равносторонний прямоугольный треугольник, в свою очередь можно считать графическим отображением этой формулы.



Это график квадратного уравнения при «а» = 4 с шагом 1.

Где «а» большее число, в данном случае это число «4». Если же число «b» будет иметь значение больше «4» то его нужно автоматически считать большим числом уравнения, то есть стороной «а».

Конец ознакомительного фрагмента.