⇚ На страницу книги

Читать Корпус наук. Фундаментальные знания

Шрифт
Интервал

© Антон Вячеславович Фукалов, 2018


ISBN 978-5-4490-5286-5

Создано в интеллектуальной издательской системе Ridero

КОРПУС НАУК

ФУНДАМЕНТАЛЬНЫЕ ЗНАНИЯ

– Корпус математики

– Корпус физики

– Корпус языка

– Корпус математики

Математика есть путь. Математика не должна пониматься как то, что является отвлечённым и сложным. Сейчас я хотел бы сказать о математике, которую выразил бы без единой формулы и цифры, и на языке. И очень не хотел бы, чтобы это считали «философией математики», хотел бы, чтобы это считали «математикой» как наукой, отраслью знания. Ведь мы все в плену заблуждений. Нам внушают, что математика – это цифры. Но кто сказал, что не может быть математики в словах и на словах? Именно такой математикой я хотел бы заняться.

Тема: «Вычисление наклона графики числа».

Под числом условимся понимать любое знаковое или семантическое выражение, которое имеет природу единичности и краткости, а следовательно может быть делённым или умноженным.

Любое число наклонено. Обычно считается в порядке вещей, что числа имеют ту или иную форму. Но на самом деле наклон числа, например, единицы или пяти – это наклон, от каждой части которого можно провести вектор, и фигура которая будет соединять отрезки вектора и будет называться графикой числа, которая отражает состояние вещества.


5

Рис.1


Получается, что взяв число «5» (см. рис.1), мы провели векторы (отрезки) от всех концов числа. И выяснили фигуру, которая обозначает число «5». Эта фигура называется «вещество числа 5».

То есть число «5» имеет вещественный аналог в жизни и практике жизнедеятельности людей.

Как мы видим из этого рисунка, оно имеет объём, потому что от нижней округлости числа идёт вверх как бы.

Кто придумал это число и другие числа именно в такой графике наклона? Судя по всему именно из природы изначально выводилось число, а не число было создано изначальным. И сейчас, через такой анализ мы восстанавливает картину числа.

То есть, всё же числовые и графические способы мы будем использовать в этой работе.

Число 5 на этом рисунке представляет собой также как плоский рисунок с одной линией пересечения, но также рисунок объёмный (при желании можно придать объём числу, если условиться что линия пересечения есть не пересечение, а форма объёмности фигуры.

И все такого рода фигуры в природе будут показателем фигуры, которая имеет в себе состояние «5».

Мы провели от числа 5 – пять векторов (отрезков), но один отрезок в две стороны, что и дало нам повод говорить об объёмности и сложности пятёрки.

Если в рамках изучения искусственного интеллекта использовать такое счисление в компьютере, то мы получим алгоритм мышления, который будет указывать на очень сложную структуру, но в мозге это должно быть именно такой формы число «5».

Получается, что математика не отдельная от природы вещь. Что изначально она была выведена из природы.

Но что может ещё значит графика (в данном случае числа «5»). Она может означать, что всё же первоначально мир мы видим как набор плоских цифр, а внутренне содержательно он больше и работает он сложнее нежели нам представляется.

Ведь если 5 ввести в функцию или уравнение, и сделать вычисление через окрестности отрезков чисел, то мы получим очень сложную структуру. Но это и будет примером мышления мозга. Дальше надо будет просто установить смысл. Один из смыслов числа «5» – это философия фигуры, которую мы получили – некая машинная направленность действия.